Научные сотрудники факультета наноэлектроники Университета ИТМО совместно с коллегами из ФИАН, РХТУ им. Д. И. Менделеева и НИЯУ МИФИ провели исследование, в котором выяснили, что нанорешетки обладают высокой спектральной селективностью. Их слои могут использоваться как фильтры для конкретных длин волн, а на одной пластине стекла возможно записать до шести слоев. Благодаря этой технологии ученые реализовали дисперсионные двулучепреломляющие фильтры, которым можно найти разное применение: например, для создания биохимических сенсоров для диагностики протока бактерий или дисплеев дополненной и виртуальной реальности с цветным изображением. Подробнее об исследовании — в материале ITMO.NEWS.
Всё в одном
В течение двух лет ученые проводят исследования по моделированию, разработке и тестированию интегральных оптических элементов для построения волноводного голографического перископа — ключевого элемента очков дополненной и виртуальной реальности нового поколения. Шлемы виртуальной реальности обычно ограничивают обзор пользователей — а «умные» очки дополняют визуальное пространство и выводят дополнительную информацию о предметах и окружающей среде.
Чтобы создать такое устройство, необходимо решить несколько задач, например как передать изображение человеку через стекло очков и сделать картинку цветной. Для этого научные сотрудники ИТМО улучшили лазерно-плазменный метод обработки стекла (ЛИМП). Он позволяет создавать преобразователи лазерных пучков, которые активно применяются в проекте для нанесения структур с субмикронным периодом. Затем с помощью метода прямой лазерной записи были получены объемные периодические структуры внутри стекла с измененным показателем преломления. Следующим этапом будет создание на одной пластине стекла субмикронных дифракционных решеток для решения задач дополненной и виртуальной реальности. Они отвечают за ввод и вывод изображения наблюдателю через дифракционные порядки.
«Наш проект направлен на разработку основ лазерной записи интегральных элементов в оптических материалах. Сейчас в лаборатории набор оптических компонентов (зеркало, источник света, фильтры, преобразователи и многое другое) занимает весь оптический стол. Мы же хотим реализовать компактные интегральные оптические схемы, которые размещаются на ладони пользователя, их также называют chip-scale devices. Например, мы проводим запись светопроводящих и селективно отражающих элементов на единой стеклянной матрице на нескольких уровнях в формате 3D. Такая схема будет компактной и защищенной от внешних воздействий», — прокомментировал Роман Заколдаев, научный сотрудник факультета наноэлектроники, один из авторов работы.
Как шло исследование
Работу над исследованием проводили несколько команд. Первая занималась прямой лазерной записью в оптических материалах. Вторая команда отвечала за измерения морфологии и физических свойств созданных микро- и наноструктур. Третья работала над теоретическим моделированием физических и оптических процессов.
На первом этапе проводились исследования прямой лазерной записи в различных оптических материалах (кварц, многокомпонентные стекла, нанопористые стекла, фторид кальция). К ним относятся образцы, которых применяют для разработки очков или считают перспективными для создания голографических элементов дополненной реальности. Среди таких материалов — нанопористые матрицы, которые разрабатываются и используются в Университете ИТМО. Исследователи применяют их в лазерной записи, чтобы увеличить эффективность фазового набега в периодической объемной структуре с субмикронным периодом.
Далее ученые экспериментировали с разными режимами прямой лазерной записи в объеме кварцевого стекла: изменяли длительность фемтосекундных лазерных импульсов, флюенс и длину волны лазерного излучения. В итоге выяснилось, что параметры структуры, такие как фазовый набег и рассеяние света, влияют на спектральный диапазон получаемых фильтров. Иными словами, исследователям удалось подобрать режимы лазерной записи, при которых формируются структуры с наибольшим значением фазового набега и минимальным рассеянием света.
На пользу физике и биохимии
В результате исследователи определили зависимость фазового набега от режимов лазерной записи в кварцевом стекле. Фазовый набег — это изменение показателя преломления в толще кварцевого стекла из-за формирования периодической структуры в объеме с разными показателями преломления (стекло-воздух). С физической точки зрения эти зоны показывают относительно большой фазовый набег (до 166 градусов) за один слой, что уже почти является полуволновой пластинкой. В перспективе полученные режимы лазерной записи позволят реализовать любой фазовый оптический элемент внутри стекла. Из-за высоких значений фазового набега созданные структуры окрашиваются в цвета двулучепреломления, если их разместить между поляризаторами.
«Многослойная запись позволяет создавать дисперсионные двулучепреломляющие фильтры в заданном спектральном диапазоне. Это уже значимо для разработки компактных сенсоров, отвечающих принципам интегральной оптики с функцией спектрального анализа. На рынке существуют дисперсионные двулучепреломляющие фильтры, но это отдельные оптические элементы. Мы же решили рассмотреть интеграцию таких фильтров на единой пластине стекла. Наша работа носит фундаментальный характер, поэтому мы провели моделирование, и результаты показали, что можно записывать многослойные структуры для работы в видимом спектральном диапазоне», — объясняет один из авторов исследования, научный сотрудник факультета наноэлектроники Алексей Рупасов.
Этот результат исследования можно использовать как элементную базу для обработки излучения в устройствах дополненной реальности, в которых изображение формируется с помощью трех цветовых координат RGB. Дифракционные решетки помогут реализовать ввод и вывод излучения в волноводе для разных длин волны. В перспективе можно создать в одной пластине стекла три вида периодических структур, которые подстроят излучение по длинам волн RGB и сделают изображение цветным.
Также ученые предложили идею и дизайн интегрального биохимического сенсора для диагностики протока бактерий. На рынке уже есть дисперсионные двулучепреломляющие фильтры на каждую длину волны отдельно, но теперь исследования можно проводить с помощью одного устройства в «лаборатории на чипе» — стеклянной подложке, которую освещают поляризованным светом. В ней или снаружи находится микрофлюидный чип, где протекают определенные жидкости с детектируемым веществом, например, в виде бактерий. Каждое такое вещество откликается на конкретный спектральный диапазон и длину волны излучения, также оно может поглотить свет или флуоресцировать. С помощью реакции можно узнать, какие происходят изменения в чипе.
Подробнее об исследовании: Sergey Kudryashov, Pavel Danilov, Alexey Rupasov, Mikhail Smayev, Nikita Smirnov, Vladimir Kesaev, Andrey Putilin, Michael Kovalev, Roman Zakoldaev and Sergey Gonchukov Direct laser writing regimes for bulk inscription of polarization-based spectral microfilters and fabrication of microfluidic bio/chemosensor in bulk fused silica (Laser Physics Letters, 2022).
Исследование выполнено за счет гранта Российского научного фонда (проект № 20-71-10103).
Алёна Мамаева
Источник: https://news.itmo.ru/

 

Исследователи из США начали использовать вторую версию ускорителя заряженных частиц LCLS при рекордно низкой температуре. Это увеличило его эффективность в тысячи раз, что приведет к новым научным открытиям.
Команда охладила ускоритель заряженных частиц до температуры –271 ˚C, при таких условиях он становится сверхпроводящим и может разгонять электроны с почти нулевой потерей энергии. Это один из последних этапов перед тем, как LCLS-II будет производить рентгеновские импульсы, которые в среднем в 10 тыс. раз ярче, чем импульсы LCLS. Это мировой рекорд для самых мощных на сегодняшний день источников рентгеновского излучения.
«Всего за несколько часов LCLS-II произведет больше рентгеновских импульсов, чем предыдущая версия такого же лазера произвела за весь срок службы, — отметил Майк Данн, директор LCLS. — Данные, на сбор которых раньше уходили месяцы, теперь можно получить за считанные минуты. Это выведет науку на новый уровень, проложит путь для совершенно нового спектра исследований и расширит наши возможности по разработке революционных технологий для решения самых серьезных проблем, стоящих перед нашим обществом».
С помощью новых возможностей ученые смогут исследовать детали сложных материалов с беспрецедентным разрешением для создания новых форм вычислительной техники и коммуникаций; выявлять редкие химические явления, чтобы создавать более устойчивые материалы для промышленности и чистой энергии; изучать, как биологические молекулы выполняют жизненные функции для разработки новых видов фармацевтических препаратов; изучить мир квантовой механики, измеряя движения отдельных атомов.
LCLS, первый в мире рентгеновский лазер на свободных электронах (XFEL), начал работать в апреле 2009 года, генерируя рентгеновские импульсы в миллиард раз ярче, чем аналогичные устройства. Он ускоряет электроны при комнатной температуре, что ограничивает его скорость 120 импульсами в секунду. Новая версия ускорителя же работает при рекордно низкой температуре, что в несколько тысяч раз ускоряет его работу. Для достижения этой температуры устройство оснащено двумя гелиевыми криоустановками. Команда SLAC Cryogenics работала над ними в течение трех лет.
«Охлаждение было критически важным процессом, и его нужно было проводить очень осторожно, чтобы не повредить криомодули, — отметил Эндрю Баррилл, глава Дирекции ускорителей SLAC. — Мы рады, что достигли этого рубежа и теперь можем сосредоточиться на работе рентгеновского лазера».
Источник: https://hightech.fm/

Чтобы приблизиться к квантовой технологии, нам нужно разработать неклассические источники света, которые могут излучать один фотон за раз и делать это по запросу. Ученые из EPFL разработали один из таких «излучателей одиночных фотонов», который может работать при комнатной температуре и основан на квантовых точках, выращенных на экономичных кремниевых подложках. Разработка неклассических источников света, которые могут излучать ровно один фотон за раз, является одним из основных требований квантовых технологий. Но хотя первая демонстрация такого «излучателя одиночного фотона», или SPE, относится к 1970-м годам, их низкая надежность и эффективность стояли на пути любого значимого практического использования. Обычные источники света, такие как лампы накаливания или светодиоды, испускают пучки фотонов одновременно. Другими словами, их вероятность испустить один фотон за раз очень мала.
Лазерные источники могут излучать потоки одиночных фотонов, но не по запросу, а это означает, что иногда фотоны вообще не излучаются, когда мы этого хотим. Таким образом, главное преимущество SPE заключается в том, что они могут делать и то, и другое: излучать один фотон и делать это по запросу — или, говоря более технически, их однофотонная чистота, которую они могут поддерживать в сверхбыстрых временных рамках. Таким образом, для того, чтобы источник света мог квалифицироваться как ТФЭ, он должен иметь однофотонную чистоту выше 50%; конечно, чем ближе к 100%, тем ближе мы будем к идеальному СФЭ. Исследователи из EPFL под руководством профессора Николя Гранжана разработали «яркие и чистые» ТФЭ на основе широкозонных полупроводниковых квантовых точек, выращенных на экономичных кремниевых подложках. Квантовые точки изготовлены из нитрида галлия и нитрида алюминия (GaN/AlN) и имеют однофотонную чистоту 95 % при криогенных температурах , а также сохраняют превосходную устойчивость при более высоких температурах с чистотой 83 % при комнатной температуре. ТФЭ также показывает скорость излучения фотонов до 1 МГц при сохранении чистоты одиночных фотонов более 50%.
«Такая яркость вплоть до комнатной температуры возможна из-за уникальных электронных свойств квантовых точек GaN/AlN, которые сохраняют однофотонную чистоту из-за ограниченного спектрального перекрытия с конкурирующими соседними электронными возбуждениями», — говорит Стахурски, доктор философии. . студент, исследовавший эти квантовые системы .
«Очень привлекательной особенностью квантовых точек GaN/AlN является то, что они принадлежат к семейству III-нитридных полупроводников, а именно тому, что стоит за революцией в твердотельном освещении (белые и синие светодиоды), важность которой была признана Нобелевской премией по физике в 2014 году. », — констатируют исследователи. «В настоящее время это второе семейство полупроводников с точки зрения потребительского рынка сразу после кремния, которое доминирует в микроэлектронной промышленности. Таким образом, III-нитриды выигрывают от прочной и зрелой технологической платформы, что делает их потенциально интересными для разработки квантовых приложений.» Важным будущим шагом будет проверка того, может ли эта платформа излучать один фотон и только один за импульс лазера, что является необходимым условием для определения ее эффективности.
«Поскольку наши электронные возбуждения демонстрируют время жизни при комнатной температуре всего от 2 до 3 миллиардных долей секунды, частота одиночных фотонов может достигать нескольких десятков МГц», — заявляют авторы. «В сочетании с резонансным лазерным возбуждением, которое, как известно, значительно улучшает однофотонную чистоту, наша платформа квантовых точек может представлять интерес для реализации распределения квантовых ключей при комнатной температуре на основе истинного SPE, в отличие от существующих коммерческих систем, которые работают с ослабленные лазерные источники». Исследование было опубликовано в журнале Light: Science & Applications.
Источник: https://android-robot.com/

Физики навели наносекундную намагниченность на газ атомов гелия с помощью света. Для этого они использовали комбинацию двух лазерных лучей, один из которых имел кольцевой профиль интенсивности и переносил орбитальный момент. Исследование опубликовано в Physical Review Letters.
За способность взаимодействовать с электрическим полем отвечает главным образом электрический заряд. У него нет магнитного аналога, хотя физики его активно ищут. Вместо этого мерой способности создавать и воспринимать магнитное поле стал магнитный момент. В классической электродинамике магнитным моментом обладает любой замкнутый контур с током. В квантовой механике магнитными моментами могут обладать отдельные атомы, а мера их взаимодействия с магнитным полем определяется сложным балансом между спиновыми и орбитальными квантовыми числами.
То, как взаимодействуют друг с другом магнитные моменты атомов, определяет возможные формы магнитного порядка в веществе, самым сильным из которых стал ферромагнетизм. Физики активно ищут различные способы управления магнитными свойствами сред с возможностью воздействовать на намагниченность локально. Свет был бы отличным инструментом для этого, но его магнитное воздействие на несколько порядков уступает электрическому. Ученые научились использовать лазер косвенно, чтобы влиять на магнетизм материалов, например, нагревая образец или вызывая локальные зарядовые токи. Однако интерес представляют манипуляции на нанометровом масштабе, чего указанные методы не позволяют
Чтобы добиться такого контроля, Йонас Вэтцель (Jonas Wätzel) из Галле-Виттенбергского университета имени Мартина Лютера вместе со своими коллегами из пяти стран применили оптическую технику, похожую на микроскопию на основе истощенного основного состояния, которая позволяет получать изображения с субволновым разрешением. Использовав закрученный свет, авторы навели долгоживущую намагниченность в ансамбле атомов, переведя их в ридберговские состояния.
В качестве среды ученые выбрали газообразный гелий, который они распыляли в камере. В середину облака перпендикулярно струе физики фокусировали два соосных луча. Первый луч, принадлежавший диапазону экстремального ультрафиолета, возбуждал атомы, попавшие в пятно фокуса, в состояние 1s3p. Второй луч был инфракрасным и обладал двумя особенностями. Во-первых, он был закрученным, то есть переносил орбитальный момент, во-вторых, его интенсивность имела провал на оси.
Длина волны второго луча была настроена таким образом, чтобы переводить возбужденные атомы гелия в высоколежащие ридберговские состояния с большим орбитальным моментом. Особое сочетание профилей интенсивности обоих лазеров приводило к тому, что оба типа возбуждения одновременно происходили преимущественно в кольце вокруг оси толщиной несколько сотен нанометров. Разреженность газа и устойчивость ридберговских состояний обеспечили стабильность наведенной светом намагниченности на масштабах наносекунд.
Чтобы доказать наличие намагниченности, физики измеряли спектр фотоэлектронов, неизбежно рождающихся при фотоионизации газа. Если магнитные моменты большого числа атомов выстроены вдоль одного из направлений, то спектр фотоэлектронов должен обладать дихроизмом, то есть чувствительностью к направлению полного орбитального момента инфракрасных фотонов. Измеренные в эксперименте спектры по большей части совпали с теоретическими предсказаниями и подтвердили намагниченность. Некоторые отличия авторы объяснили недипольными взаимодействиями.
Физики использовали атомы гелия из-за простоты их моделирования и экспериментальной работы с ними. Однако тот же самый эффект можно увидеть на любых других атомах, которые способны поддерживать ридберговские состояния. Если осадить такие атомы на магнитоактивные поверхности, предложенный авторами метод позволит изучать их пространственно-временной отклик.
Источник: https://nplus1.ru/

Британские исследователи установили на мультироторный беспилотник магнито-оптическую ловушку и продемонстрировали ее работоспособность в воздухе. Полет длился десять минут, в течение этого времени в ловушке удавалось удерживать до 20 миллионов охлажденных атомов рубидия.
Исследование опубликовано в Atoms.
Увеличение точности физического эксперимента немыслимо без уменьшения температуры. Охлаждение элементов опытной установки не только уменьшает шумы, но и позволяет обнаружить недоступные ранее режимы и фазы материи. Особенно сильно эта идея проявила себя в атомной физике. Массивы ультрахолодных атомов позволили обнаружить бозе-эйнштейновскую конденсацию, создать атомные часы и атомные интерферометры.
Существует несколько методов охлаждения атомов, ионов и молекул до ультрахолодных температур, но все они так или иначе требуют их пленения. Поэтому любая попытка создания мобильной экспериментальной установки начинается с выноса соответствующей ловушки за стены лаборатории. Уже рассказывали о том, как физики и инженеры отправили в космос атомные часы и установку для создания конденсата, а также испытали переносной атомный гравиметр в городских условиях.
Интерес также представляет размещение массивов холодных атомов на беспилотных летательных аппаратах. Уже сейчас они активно используются во множестве приложений, начиная от археологии и геологии и заканчивая лесным хозяйством. Установка на них датчиков на основе холодных атомов способна не только улучшить качество существующего зондирования, но и открыть его новые способы. Для этого, однако, нужно вписаться в строгие требования к размеру, весу и мощности, а также обеспечить устойчивость к движению платформы.
Решить эту задачу вызвался коллектив британских физиков под руководством Майкла Холински (Michael Holynski) из Бирмингемского университета. Им удалось изготовить компактную магнито-оптическую ловушку и поместить на квадрокоптер. Устройство создавало и удерживало облако холодных атомов с характеристиками, сопоставимыми с лабораторными экземплярами, а полевые тесты показали его работоспособность в режиме полета.
Для работы магнито-оптической ловушки и хранения в ней атомов требуется создать вакуум, в котором с помощью лазеров и магнитов будет сформирован удерживающих потенциал. Для откачки воздуха авторы использовали активный ионный и пассивный геттерный насосы, однако в автономном режиме работал только второй. Квадрупольное магнитное поле в установке создавала пара неодимовых магнитов размерами 3 × 3 × 8 миллиметров, конструкция также допускала использование вместо них пары катушек. Свет, использованный для охлаждения и захвата атомов, генерировала волоконная лазерная система с удвоением частоты.
В качестве атомов для захвата исследователи выбрали рубидий, дозаторы которого содержала в себе вакуумная система. Раз в 40 секунд ловушка захватывала атомы после чего их фотографировала камера. На земле число атомов достигало 2,1±0,2×107 с характерным временем загрузки равным 1,47±0,12 секунды, что сопоставимо с аналогами.
График зависимости загрузки ловушки от времени на земле. Во врезе изображена фотография атомного облака (в красной рамке). / Luuk Earl et al. / Atoms, 2022
В качестве носителя для ловушки авторы выбрали беспилотник Vulcan, произведенный Raven UAV Ltd. Дрон без нагрузки способен находиться в воздухе 32 минуты. Нагрузка же магнито-оптической ловушкой суммарной массой 6,56 килограмм сократила это время до 18 минут. Во время полевых тестов беспилотник поднял установку на высоту 10 метров, на которой та генерировала облака холодных атомов в течение 10 минут.
Проделанная исследователями работа – это первая в мире демонстрация того, что ловушки холодных атомов можно разместить на беспилотном летательном аппарате. Тем не менее до создания летающих атомных гравиметров или атомных часов еще пока далеко. По оценкам автором, для реализации гравиметра вес ловушки должен быть уменьшен примерно в 50 раз.
Источник: https://nplus1.ru/

Физики изготовили металинзу, которая одновременно генерирует и фокусирует когерентное излучение в области вакуумного ультрафиолета. Для этого они использовали метаатомы на основе оксида цинка, генерирующие вторую гармонику. Исследование опубликовано в Science Advances.
Свет — это распространенный инструмент исследования или воздействия на маленькие объекты и материалы. Однако оптические методы ограничивает дифракционный предел, который не позволяет сжать луч света в пятно, меньшее, чем длина волны. Из-за этого эффекта в микроскоп невозможно увидеть наночастицы и атомы, а оптическая литография не способна создавать наноструктурированные паттерны.
Очевидным выходом из этой ситуации стало использования излучения с меньшей длиной волны. На смену видимому диапазону, таким образом, пришел ультрафиолетовый. Однако, начиная примерно с двух сотен нанометров, ультрафиолетовая оптика столкнулась с сильным поглощением излучения средой, в том числе и воздухом. Для работы с таким светом воздух в приборе должен быть откачан, поэтому этот диапазон ультрафиолета стали называть вакуумным.
Работа с вакуумным ультрафиолетом (ВУФ) сталкивается с проблемой потерь на оптических компонентах и отсутствии компактных когерентных источников. Существует всего несколько материалов, способных пропускать ВУФ, например, фториды кальция и магния, но они сравнительно хрупкие, что мешает изготавливать из них линзы. Использование зеркальной оптики решает эту проблему, но значительно увеличивает объем и сложность ВУФ-систем. Те же трудности испытывает генерация лазерного света в ВУФ-диапазоне. Пока для этого используют либо громоздкие эксимерные лазеры, либо генерацию высших гармоник в кристаллах и газах, сильно ограниченную требованиями фазового синхронизма на ВУФ-частотах.
Мин Лунь Tсэн (Ming Lun Tseng) из Национального университета Ян-Мин с коллегами Гонконга, США и Тайваня применили совершенно иной подход для одновременного решения обеих этих проблем.
Источник: https://nplus1.ru/

Физикам удалось превратить скрученный бислой из дихалькогенидов переходных металлов в ферромагнетик, облучая его лазерным светом. Теория показала, что эффект может быть объяснен с помощью блуждающих экситонов, которые выступают посредниками между спинами, локализованными в ячейках муаровой решетки. Исследование опубликовано в Nature.
Постоянный магнит — это замечательный пример того, как квантовая фаза, в которой находится вещество, явно проявляет себя на макроскопическом масштабе. Ферромагнетизм обязан своим существованием коллективному взаимодействию отдельных атомных магнитных моментов. И хотя мы понимаем, как создается магнитный порядок в обычном куске железа, мы не может его детально контролировать и изучать, поскольку доступ к отдельным атомам в таком случае затруднен, а их огромное количество делает любые такие манипуляции неэффективными.
Новой парадигмой в исследовании магнитного порядка стали искусственные материалы, в которых можно симулировать ферро- и антиферромагнетизм, либо воспроизводить его в хорошо контролируемых условиях с помощью квазиатомов или квазирешеток. К последнему типу относятся исследования в слоистых материалах, скрученных относительно друг друга на небольшие углы. В этом случае в материале создается дополнительная периодичность, называемая муаровой сверхрешеткой. Мы уже рассказывали, как физики находили ферромагнетизм, скручивая четное и нечетное число антиферромагнитных слоев иодида хрома.
Другим перспективным классом материалов стали дихалькогениды переходных металлов. Например, внедрение примесей в двуслойный дисульфид тантала превратило его из парамагнетика в ферромагнетик. А совсем недавно физики смогли увидеть хрупкое упорядоченное состояние электронной плотности — вигнеровский кристалл, — скрутив слой дисульфида вольфрама относительно диселенида вольфрама. Сейчас ученые активно пытаются обогатить свой инструментарий для управления свойствами носителей заряда в муаровых сверхрешетках, включив туда, например, оптические методы.
Физики из Гонконга, США и Японии под руководством Яо Ваня (Wang Yao) из Вашингтонского университета и Сяодуна Сюй (Xiaodong Xu) из Гонконгского университета исследовали то, как оптическое возбуждение может влиять на спин-спиновые взаимодействия между носителями заряда, локализованными в ячейках муаровой сверхрешетки. Таким способом они смогли получить ферромагнитный порядок в скрученном бислое дисульфида и диселенида вольфрама.
Для этого физики создавали гетероструктуру, которая помимо дихалькогенидного скрученного бислоя состояла из дополнительных слоев нитрида бора и графена, а также дополнительных электродов, подсоединенных к слоям. Муаровая сверхрешетка, образованная в бислое, имела период равный 7,5 нанометра. Управляя напряжениями на электродах, авторы могли заполнять ее ячейки дырками либо электронами в нужной концентрации.
Затем физики облучали образец лазерными импульсами переменной круговой поляризации. Это, с одной стороны, резонансно возбуждало в селениде вольфрама экситоны, которые практически сразу становились межслоевыми, а с другой — помогало измерить магнитный круговой дихроизм по интенсивности отражения света от образца. Разница в отражении света с разной поляризацией несет информацию о намагниченности поверхности.
Авторы изучали то, как зависит этот разностный сигнал от степени заполнения ячеек муаровой сверхрешетки и от приложенного магнитного поля. Они обнаружили, что для случаев одной дырки на три и на семь ячеек намагниченность образца менялась неодинаково в зависимости от того, в каком направлении — уменьшения или увеличения — менялось магнитное поле. Другими словами, исследователи наблюдали гистерезис, характерных для ферромагнитных материалов.
Физики подробно исследовали, как зависят свойства этих петель от прочих условий эксперимента: концентрации дырок, температуры и мощности лазера. Они выяснили, что гистерезис появляется только начиная с некоторого порога накачки, а его ширина насыщается с ее ростом. Кроме того, они определили соответствующие температуры Кюри, при которых образец способен удерживать намагниченность, которые также зависели от условий эксперимента.
Авторы предположили, что наблюдаемые закономерности могли бы быть объяснены с помощью блуждающих экситонов, которых тем больше, чем интенсивнее лазерный свет. Как показали их оценки, такие экситоны могли бы стать посредниками между спинами пойманных в муаровых ячейках дырок, обеспечивая сильное дальнодействующее взаимодействие, без которого невозможно образование ферромагнитной фазы.
К сожалению, моделирование самой петли гистерезиса затруднено из-за того, что для этого необходимо решить неравновесную задачу многих тел.
С каждым годом у физиков растет понимание того, что представляют собой муаровые экситоны. Недавно ученые смогли измерить пространственное распределение электрона и дырки у такой квазичастицы.
Марат Хамадеев
Источник: https://nplus1.ru/

Учёные Сибирского федерального университета в составе международного научного коллектива предложили создать лазер на основе особого состояния света вблизи поверхности слоистой анизотропной среды, покрытой жидким кристаллом. Исследователи построили численную модель устройства и показали, как можно эффективно менять локализацию сгустка света и оптимизировать его спектральные свойства. Предполагается, что в дальнейшем это поможет разнообразить возможности существующих миниатюрных лазеров.
Статья с результатами работы опубликована в журнале Nanomaterials.
«В предложенном устройстве в результате множественных переотражений закрученный световой волчок запирается на границе между двумя различными зеркалами. Первое зеркало — холестерический жидкий кристалл. Это структура, которая не обладает зеркальной симметрией оптических свойств, потому что состоит из ориентированных продолговатых молекул, направление которых «закручивается» в пространстве подобно винтовой спирали, похожей на спираль ДНК. Как раз благодаря этому поляризацию световой волны можно закрутить, как волчок. А в качестве второго зеркала надо взять такую структуру, которая не меняла бы знак поляризации падающего на него света. Например, слоистую структуру, напоминающую торт „Наполеон“, сложенный из одинаковых одноосных диэлектрических слоёв, которые чередуются так, что оптическая ось каждого последующего слоя повернута на угол 90 градусов относительно оси предыдущего», — рассказал руководитель научной группы, профессор кафедры теоретической физики и волновых явлений, ведущий научный сотрудник лаборатории нанотехнологий, спектроскопии и квантовой химии кафедры фотоники и лазерных технологий СФУ Степан Ветров.
Учёные объяснили, что поляризацию можно представить как вектор электрической напряженности, основание которого находится в освещённой точке, а острый конец колеблется. Если стрелка вращается по кругу, то говорят, что свет обладает круговой поляризацией. Вращение может происходить по (или против) часовой стрелки или, другими словами, по правозакрученной или левозакрученной спирали. В этом случае принято говорить, что свет имеет правую (или левую) круговую поляризацию.
Холестерический жидкий кристалл – это полупрозрачное зеркало, которое сильно отражает свет только в том случае, когда стрелка поляризации вращается по кругу, причем в ту сторону, куда указывают молекулы жидкого кристалла. Полупрозрачность может создать определенную трудность из-за того, что при отражении пучка поляризованного света от обычного металлического зеркала направление вращения вектора напряженности сохраняется, а направление распространения света меняется на противоположное, превращая право-поляризованный свет в лево-поляризованный, и наоборот.
После такого отражения световую волну сложно запереть: меняя поляризацию, она постоянно «просачивается» из «ловушки» сквозь жидкий кристалл. Именно поэтому как второе зеркало нужно использовать структуру-«многослойник», которая способна сохранять поляризацию и быть анизотропной. Если использовать для создания многослойной структуры современные оптические материалы, такие как сильноанизотропные полимеры, и на поверхность аккуратно нанести холестерический жидкий кристалл, то на границе такой структуры может возникнуть уникальное долгоживущее «запертое» состояние света — оно может не затухать на протяжении пикосекунды, за это время свет успевает совершить примерно тысячу колебаний.
«В таком случае можно сказать, что показатель качества структуры, ее добротность, составляет порядка тысячи. Такой световой «волчок» получил имя хиральное оптическое таммовское состояние», — продолжил Степан Ветров.
Соавтор исследования, доцент кафедры электротехнологии и электротехники, научный сотрудник лаборатории нанотехнологий, спектроскопии и квантовой химии СФУ Рашид Бикбаев, в свою очередь, отметил, что для сохранения высокой добротности таммовского состояния необходимо, чтобы зеркала имели высокий коэффициент отражения. Для этого анизотропное зеркало должно содержать большое число периодов, но, технологически выполнить эту задачу достаточно трудно.
«В этой работе для получения лазера на основе хирального оптического таммовского состояния мы предложили гибридное зеркало, состоящее из небольшого числа диэлектрических слоев и металл-диэлектрической метаповерхности. Такая поверхность была ранее получена нами в ходе эксперимента. Она состоит из массива прямоугольных золотых нанокирпичей, расположенных на 100-нанометровом слое диоксида кремния SiO2, нанесенного на отражающую золотую пластинку толщиной 200 нм. Нанокирпичи длиной 190 нм, шириной 70 нм и толщиной 70 нм повернуты на угол 45 градусов относительно ориентации жидкого кристалла», — сказал Рашид Бикбаев.
По словам доцента кафедры физики СФУ Натальи Рудаковой, привычные для нас алюминиевые зеркала отражают не весь видимый свет. По ГОСТу, четверть световой энергии может поглощаться металлом или рассеиваться. Оказывается, что гибридное зеркало отражает 90% света с нужной поляризацией, и поэтому сохраняет высокую добротность структуры.
«Рассчитываем, что использование метаповерхностей и различных типов зеркал для получения высокодобротного хирального оптического таммовского состояния увеличит возможности для оптимизации и управления, а наши исследования помогут со временем создать новые типы миниатюрных лазеров с «закрученным» световым пучком», — заключила Наталья Рудакова.
Источник: https://indicator.ru/

Исследователи из американского Национального института стандартов и технологий (НИСТ) показали, что использование исключительных точек при распространении света в периодической структуре с потерями позволяет значительно сократить рассеяние и затухание света.
Работа опубликована в журнале Nature Nanotechnology.
Физики из НИСТ изучали миниатюрную светорассеивающую систему — ультратонкий слой нитрида кремния, расположенный на кремниевом чипе. По всей длине нитрида нанесены близко расположенные периодические бороздки. Эти канавки создают дифракционную решетку — устройство, которое рассеивает свет разных цветов под разными углами, а нитрид кремния направляет входящий свет. Решетка рассеивает большую часть света вверх, перпендикулярно устройству, что должно приводить к экспоненциальному затуханию световой волны.
Исследователи заметили, что в большинстве экспериментов свет ведет себя, «как положено», и стремительно затухает. Однако, если ширина канавок была почти равна расстоянию между ними, при определенной длине волны инфракрасного света, его интенсивность снижалась линейно, а не экспоненциально. При этом незначительные изменения длины волны или расстояния между канавками возвращали систему к экспоненциальному затуханию.
Ученые также заметили, что каждый раз, когда интенсивность потока, распространяемого вдоль решетки, менялась от экспоненциальной к линейной, свет, рассеянный вверх, формировал широкий пучок с одинаковой интенсивностью на всем протяжении.
Команде исследователей НИСТ потребовалось несколько лет, чтобы разработать теорию, которая могла бы объяснить странное явление.
Ученые полагают, что оно обусловлено комплексным взаимодействием между структурой решетки и светом, распространяющимся вперед и вверх. При определенных условиях, в так называемой исключительной точке, совокупность этих факторов резко сокращает потери инфракрасного света.
Как отмечают авторы работы, дальнейшие эксперименты показали, что аналогичные исключительные точки характерны для любого типа волн (например, акустических, рентгеновских, радиоволн), распространяющихся через периодическую структуру с потерями.
Исследователи считают, что найденное ими свойство света поможет передавать лучи света от одного устройства на основе чипа к другому без потери энергии, что пригодится в оптических коммуникациях. А широкий вертикальный луч, созданный в исключительной точке, будет полезен при изучении облака атомов.
Еще одним потенциальным применением является мониторинг окружающей среды. Как объясняют авторы работы, если загрязнитель на поверхности датчика изменит длину волны света в решетке, исключительная точка резко исчезнет, а интенсивность света быстро перейдет от линейного к экспоненциальному спаду.
Источник: https://hightech.fm/

Международная группа исследователей имитировала взаимодействие между остатками сверхновых и молекулярными облаками с помощью мощного лазера и пенопластового шара. Работа опубликована в журнале Matter and Radiation at Extremes.
Ученые использовали пенопластовый шар, чтобы смоделировать эффекты воздействия ударных волн от взрыва сверхновой на плотные области внутри молекулярного облака. Исследователи поместили этот шар в камеру, наполненную газом, и облучали его мощным лазером, имитирующим взрывные волны. Сжатие шара под воздействием удара фиксировались при помощи рентгеновского излучения.
Молекулярные облака представляют собой скопления газа и пыли в космосе. Астрофизики отмечают, что в обычных условиях такие облака остаются в состоянии равновесия. Однако под воздействием внешних факторов, например, взрыва сверхновой, покой нарушается. Распространение ударной волны через пыль и газ формирует области из плотного материала. При определенных условиях сжатый газ коллапсирует, что запускает процесс звездообразования.
«Мы смотрим на начало взаимодействия, — говорит Бруно Альбертацци, соавтор исследования. — Это позволяет понять, увеличится ли средняя плотность пены и станет ли проще звездообразование».
Ученые установили, что под воздействием взрыва часть пены сжималась, часть ее также растягивалась. Они оценили изменения средней плотности материала. В дальнейших работах астрофизики планируют исследовать влияние радиации, магнитного поля и турбулентности на звездообразование.
По словам исследователей, механизмы запуска образования звезд интересны по многим причинам. Они помогают понять скорость изменений и эволюцию галактики, объяснить образование самых массивных звезд и историю развития нашей Солнечной системы.
Однако, по словам авторов работы, астрономические наблюдения не имеют достаточно высокого пространственного разрешения для наблюдения за этими процессами, а численное моделирование не справляется со сложностью взаимодействия между облаками и остатками сверхновых.
«Наше молекулярное облако, в котором образовалось Солнце, скорее всего, было создано остатками сверхновых, — сказал автор Альбертацци. — Этот эксперимент открывает для лабораторной астрофизики новый и многообещающий путь к пониманию ключевых процессов».
Источник: https://hightech.fm/

Группа ученых из Австралии, Дании и США использовала добытый в Намибии и особым образом обработанный оксид меди для получения самых крупных из когда-либо созданных руками человека поляритонов Ридберга — гибридных частиц света и вещества. Особый вид света, созданный с помощью купленного на e-Bay драгоценного камня, может открыть путь к эффективным квантовым симуляторам.
Особенность поляритонов Ридберга в том, что они непрерывно переключаются между светом и веществом, как монета с двумя сторонами, и сторона вещества позволяет этой частице взаимодействовать с другими поляритонами. Эти уникальные частицы могут применяться в квантовых симуляторах, особого типа квантовых машинах, хранящих информацию в виде квантовых битов, или кубитов.
Квантовые симуляторы могли бы разрешить важные загадки физики, химии и биологии, например, как получать высокотемпературные сверхпроводники, более дешевые и эффективные удобрения, как упростить фолдинг белков для создания лекарств.
Для того чтобы создать поляритоны Ридберга, международная группа ученых уловила свет между двумя зеркалами с высокой отражающей способностью, пишет Phys.org. Из кристалла оксида меди, добытого в шахте Намибии и купленного физиками на e-Bay, была изготовлена тонкая — меньше человеческого волоса — отполированная пластина толщиной 30 мкм. Ее поместили между двумя зеркалами, как начинку сэндвича. Получившиеся поляритоны Ридберга оказались в 100 раз крупнее, чем когда-либо прежде.
Ученые собираются и дальше работать над совершенствованием своего метода, чтобы исследовать возможность производства квантовых схем для квантовых симуляторов.
Источник: https://hightech.plus/

Страница 1 из 11

© 2022 Лазерная ассоциация

Tout sur Kamagra ici https://www.kamelef.com/kamagra-ou-viagra.html.

Поиск