Группа ученых из США, Швеции и Дании использовала рентгеновский лазер, чтобы наблюдать процессы, происходящие в карбене железа — перспективном фотосенсибилизаторе — при попадании на него солнечного света. Статья об открытии опубликована в журнале Nature Communications.
Фотосенсибилизаторы — это молекулы, которые поглощают солнечный свет и передают его энергию для создания электрического тока или запуска химических реакций. Их основу, как правило, составляют редкие, дорогие металлы. Открытие этого класса соединений на основе довольно дешевого железа в последнее время вызвало бурный интерес в научном сообществе. Но чтобы создавать более эффективные фотосенсибилизирующие карбены железа, ученые должны точно понять, какие процессы происходят в этих материалах на атомном уровне.
В солнечном элементе карбен железа присоединяется к полупроводниковой пленке на поверхности элемента. Свет попадает на атом железа и «выбивает» из него электроны, которые перетекают в прикрепленные к нему карбеновые группы. Если электроны остаются на этих концах достаточно долго — около десяти триллионных долей секунды или более — они могут затем переместиться в солнечную батарею и повысить ее эффективность. Кроме того, такие материалы могут быть полезны в качестве катализаторов некоторых реакций в химической промышленности, но для этого необходимо еще сильнее повысить время пребывания электронов в карбеновых группах.
Чтобы выяснить, как увеличить эффективность этих соединений, группа ученых исследовала образцы одного из карбенов железа с помощью рентгеновских лазерных импульсов из когерентного источника света LCLS. Авторы одновременно измерили два отдельных сигнала, которые показывают движение атомных ядер и электронов в молекуле.
Результаты показали, что всего 60% электронов хранились в карбеновых группах необходимое количество времени. Остальные возвращались к атому железа слишком рано. Используя такой метод анализа, ученые теперь намерены разработать соединения этого класса, 100% электронов которых могут оставаться в нужных концевых группах достаточно долго, чтобы использовать их в качестве эффективных веществ для солнечной энергетики и катализа.
Источник: https://indicator.ru/

Исследователи из Гарвардской школы инженерных и прикладных наук Джона А. Полсона в сотрудничестве с исследователями из Университета Макмастера и Питтсбургского университета разработали новую платформу для полностью оптических вычислений, то есть вычислений, выполняемых исключительно с помощью пучков света.
Статья исследователей опубликована в Proceedings of the National Academy of Sciences.
Сегодня большая часть технологий оптических вычислений использует для своей работы твердые материалы, такие как металлические провода, полупроводники и фотодиоды. Но идея оптических вычислений состоит именно в том, чтобы убрать все твердые электронные компоненты, присутствующие в стандартных схемах, и управлять светом с помощью излучения.
Способные на это платформы используют так называемые нелинейные материалы, которые изменяют свой показатель преломления в ответ на интенсивность света. Когда свет проходит через эти материалы, их показатель преломления увеличивается, образуя свой собственный сделанный из света волновод.
В настоящее время большинство нелинейных материалов требуют мощных лазеров для создания такого эффекта или не могут создать устойчивый волновод при прохождении излучения.
Теперь международная группа исследователей создала принципиально новый материал, который использует обратимое набухание и сжатие гидрогеля при низкой мощности лазера для изменения показателя преломления. Синтезированный авторами материал представляет собой сополимер, состоящий из акриловой кислоты и акриламида. Кроме того, авторы добавили в него светочувствительные молекулы спиропирана.
Когда свет проходит через такой гель, область, на которую он попадает, немного сжимается, концентрируя полимер и изменяя показатель преломления. Когда свет выключен, гель возвращается в свое первоначальное состояние. Когда через материал проходят несколько лучей, они взаимодействуют и влияют друг на друга, даже на больших расстояниях. Луч А может подавлять Луч Б, Луч Б может подавлять Луч А, оба они могут «отключать» друг друга или проходить через материал вместе, создавая оптический логический элемент.
«Материаловедение меняется, — отмечает соавтор исследования, профессор материаловедения Гарвардской школы инженерных и прикладных наук Джоанна Айзенберг. — Саморегулирующиеся, адаптивные материалы, способные оптимизировать свои собственные свойства в ответ на воздействие окружающей среды, заменяют статические, энергоэффективные, внешне регулируемые аналоги. Наш обратимо отзывчивый материал, который контролирует свет при исключительно малых интенсивностях, является еще одной демонстрацией этой многообещающей технологической революции».
Источник: https://indicator.ru/

Немецкие ученые предложили использовать для защиты от солнца чувствительные к ультрафиолету красители, которые меняют цвет в зависимости от времени и интенсивности воздействия солнечных лучей.
Красители они нанесли на браслеты, переводные татуировки, тканевые патчи, очки и контактные линзы: их можно отсканировать в мобильном приложении, которое подскажет пользователю, что стоит перебраться в тень или воспользоваться другими средствами защиты. Статья опубликована в Advanced Optical Materials.
Солнечный свет играет очень важную роль для здоровья человека: под действием ультрафиолетовых лучей, например, активируется выработка витамина D, который, помимо прочего, отвечает за укрепление костной и мышечной ткани. Тем не менее, длительное пребывание на солнце может нанести организму большой вред: от покраснения кожи и солнечного удара до ожогов и развития меланомы.
Именно поэтому рекомендуется пользоваться солнцезащитными кремами, которые создают эффективный барьер между ультрафиолетом и кожей, а также носить головные уборы, солнцезащитные очки (сетчатка глаза также может пострадать от прямых солнечных лучей) и, по возможности, — закрытую одежду. При этом достоверно оценить то, насколько солнце потенциально может нанести вред, довольно сложно.
Специально для этого придумывают гаджеты, которые подсказывают пользователю, когда ультрафиолета для него слишком много (например, пару лет назад небольшую наклейку-сенсор разработала компания L’Oréal).
Вольфганг Курц (Wolfgang Kurz) из Мюнхенского технического университета и его коллеги предложили использовать для этого более универсальный способ — краску, которая меняет цвет под действием ультрафиолетовых лучей.
Источник: https://nplus1.ru/

Российские физики из Института сильноточной электроники СО РАН в Томске добились генерации импульсов лазерного излучения с мощностью в 40 тераватт — это рекорд для источников света видимого диапазона. Достижение стало возможным благодаря использованию гибридной схемы установки и усилению второй гармоники излучения, сообщает издание «Наука в Сибири».
Лазеры — это квантовые источники света, которые характеризуется высокой временной и пространственной согласованностью порождаемых электромагнитных колебаний. Такие устройства нашли массу применений как в лабораториях, так и в бытовых приборах. Одно из современных направлений в области физики лазеров — это получение как можно более интенсивных световых полей, что может пригодиться в ряде экспериментов, таких как исследование структуры материалов и биологических тканей, ускорение элементарных частиц, исследование динамики химических реакций и многое другое.
На данный момент физики придумали огромное количество разных конструкций лазеров и различных способов увеличения мощности их излучения. Как правило, рабочей средой наиболее мощных лазеров выбираются твердотельные кристаллы, в первую очередь кристаллы сапфира с примесью ионов титана, а увеличение интенсивности происходит методом усиления чирпированных импульсов. Так работают многие из рекордно мощных лазеров, в том числе китайские установки SULF и CAEP-PW, которые генерируют излучение ближнего инфракрасного диапазона с мощностью в несколько петаватт.
Томские физики завершили новый этап улучшения лазерной системы THL-100 (Terawatt Hybrid Laser), с помощью которой пытаются получить импульсы видимого диапазона с мощностью около 100 тераватт. Первый вариант установки с мощностью в единицы тераватт был построен в 2008 году, в 2012 удалось достичь 14 тераватт, что стало рекордным значением для того времени. Новая модернизация позволила повысить показатель до рекордных 40 тераватт.
Система THL-100 состоит из двух основных компонентов: твердотельного титан-сапфирового лазера и газового фотодиссоционного усилителя. Основная длина волны лазера приходится на ближний инфракрасный диапазон, но данная установка генерирует вторую гармонику с длиной волны 475 нанометров.
Усилитель работает за счет облучения полости с фторидом ксенона XeF2 мощным ультрафиолетовым излучением вакуумного диапазона, который, в свою очередь, возникает при пропускании мощного электрического импульса через чистый ксенон. В результате воздействия фотонов XeF2 диссоциирует до эксимерных молекул XeF, которые после столкновения с молекулами буферного газа (азотом N2) попадают в необходимое состояние лазерного перехода.
Новое достижение стало результатом применения нескольких усовершенствований. В частности, была увеличена суммарная энергия выходных импульсов с 0,7 до 1,2 джоулей, а продолжительность при этом была сокращена с 50 до 30 фемтосекунд посредством использования схемы «растяжение—усиление—сжатие». Также была улучшены другие характеристики лазера, такие как однородность пучка.
«Уникальным в такой системе является именно выходной лазерный усилитель, — рассказывает заведующий лабораторией газовых лазеров ИСЭ СО РАН доктор физико-математических наук Валерий Лосев. — Для усиления сверхкоротких импульсов излучения используется особый широкополосный лазерный переход C-A эксимерных молекул ксенон-фтор. Накачка активной среды двухступенчатая: сначала сильноточным электронным пучком возбуждается чистый ксенон, а затем получающимся жестким ультрафиолетовым излучением осуществляется фотонакачка рабочей смеси. На выходе системы — голубой свет».
Источник: https://nplus1.ru/

Российские ученые из Центра фотоники и двумерных материалов МФТИ разработали принципиально новую конструкцию биосенсора, который во много раз чувствительнее, а также значительно дешевле существующих аналогов. Описание приведено в журнале Sensors.
Биосенсор — электрохимический датчик, позволяющий в реальном времени определять состав биологических жидкостей. Единственное на сегодняшний день массовое бытовое применение биосенсоров — в приборах для моментального измерения уровня глюкозы в крови. Но футурологи обещают, что в недалеком будущем бытовые электронные приборы, анализирующие при помощи биосенсоров состав пота, слюны, глазной жидкости и других выделений, смогут идентифицировать личность, делать медицинские анализы, ставить диагнозы, непрерывно контролировать состояние здоровья и составлять оптимальный рацион питания для конкретного человека в зависимости от текущего состояния его организма.
Биосенсоры могли бы быть встроены в смартфоны, умные часы и другие гаджеты уже сейчас, но главными препятствиями являются их высокая стоимость и низкая чувствительность. Ученые из МФТИ нашли недорогой способ, как поднять чувствительность биологических датчиков до уровня, достаточного для их применения в бытовых приборах.
«Традиционный биосенсор состоит из кольцевого резонатора и волновода, расположенного в одной плоскости с резонатором, — приводятся в пресс-релизе института слова первого автора статьи Кирилла Воронина, сотрудника лаборатории нанооптики и плазмоники МФТИ. — Мы решили попробовать разнести эти два элемента, поместить их в разные плоскости, расположить колечко над волноводом».
Раньше никто из исследователей не пытался так делать, потому что в лабораторных условиях гораздо проще изготовить одноуровневую плоскую конструкцию, совмещающую кольцевой резонатор и волновод на единой подложке.
Двухъярусную конструкцию биосенсора сложнее изготавливать в единичных экспериментальных экземплярах, но зато проще и дешевле при массовом производстве на заводах микроэлектроники, где все технологические процессы ориентированы на послойное размещение активных элементов. Но главное, предложенная объемная конструкция биосенсора позволяет добиться от него во много раз большей чувствительности. Работа биосенсоров основана на том, что за счет поглощения органических молекул поверхностью датчика происходит небольшое изменение показателя преломления последней. Это изменение фиксируется с помощью резонатора, так как даже самые слабые колебания показателя преломления вызывают значительное смещение резонансных пиков. Поэтому биосенсор способен откликаться чуть ли не на каждую органическую молекулу, попадающую на поверхность датчика.
«У нас полосковый волновод расположен под резонатором, в толще диэлектрика, — объясняет один из соавторов работы Алексей Арсенин, ведущий научный сотрудник лаборатории нанооптики и плазмоники МФТИ. — Резонатор же находится на границе раздела, между диэлектрической подложкой и внешней средой. Это позволяет значительно поднять его чувствительность путем подбора показателей преломления двух сред».
В предложенной учеными новой компоновке биосенсора вся его оптическая часть — источник и детектор излучения — располагается внутри диэлектрика. Снаружи же остается только чувствительная зона конструкции — золотое колечко диаметром несколько десятков микрометров и толщиной несколько десятков нанометров.
Источник: https://ria.ru/

Американские ученые использовали импульсы фемтосекундного лазера, чтобы нанести наногравировку на поверхность металла. Такой материал выборочно абсорбирует свет только солнечного спектра.
Обычно поверхность металла блестящая и хорошо отражает свет, но ученые из Рочестерского университета разработали технологию, превращающую его в непроглядно-черный и показали, как такой материал можно применять для получения предельно производительных генераторов солнечной энергии, пишет Phys.org.
При помощи фемтосекундного лазера ученые нанесли на поверхности металла наноструктуры, эффективно улавливающие солнечное излучение, то есть превратили металл в полностью черный. Тот же процесс они использовали и для добавления других цветов — синего, желтого или серого. Такая поверхность не только повышает поглощение солнечного света, но и сокращает рассеивание тепла на других длинах волн.
«Впервые мы сделали идеальный металлический солнечный коллектор, — заявил профессор оптики Го Чуньлэй. — Также мы продемонстрировали поглощение солнечной энергии с помощью теплового генератора электричества».
Вдобавок исследователи экспериментировали с алюминием, медью, сталью и вольфрамом, и обнаружили, что вольфрам, который используют в качестве устройства для сбора тепловой солнечной энергии, обладает наивысшим КПД, если покрыть его наноструктурами. Тогда его производительность повышается на 130 процентов. Лампочка с такой нитью накаливания будет гореть ярче при том же расходе энергии.
В прошлом эта команда уже применяла фемтосекундный лазер для создания супергидрофобной поверхности. Полученные металлы не тонули в воде, даже если их топили или протыкали.
http://www.nanonewsnet.ru/ 

Бразильские и Американские ученые изобрели простой и быстрый способ поиска дефектов в двумерных материалах. Для этого они скомбинировали метод микроскопии при помощи генерации второй гармоники с микроскопией темного поля. До этого основным инструментом для проверки однослойных структур считался дорогой и большой электронный микроскоп, непригодный для массового применения на производстве. Исследование опубликовано в журнале Nano Letters.
В последние годы индустрия электроники ищет способы использовать материалы из одного слоя атомов — двумерные материалы (самый известный из них, пожалуй, графен). Используя такие материалы, разработчики процессоров смогут уменьшить размеры устройств и их энергопотребление. Однако, массовое производство сложных компонентов невозможно без быстрого и надежного способа выявлять брак.
До недавнего времени поиск дефектов в двумерном материале занимал много времени и требовал серьезного оборудования и высокой квалификации, но группа исследователей из США и Бразилии под руководством Бруно Карвальо (Bruno R. Carvalho) из Федерального университета Рио Гранде (Бразилия) предложила способ дефектоскопии, который может применяться быстро и массово. Существует физическое явление, называемое генерацией второй оптической гармоники (ГВГ). Фотоны, проходя через некоторые материалы, объединяются и формируют новые фотоны с удвоенной энергией, то есть с вдвое большей частотой. Иными словами, предмет люминесцирует другим цветом по сравнению с тем, которым его освещают. Этот эффект значительно усиливается в местах, где нарушается структура атомов в двумерном материале. Испуская лазером свет на фиксированной частоте и регистрируя его на удвоенной, можно получить изображение этих нарушений структуры, которые и укажут на дефекты.
Проблема в том, что видимые на таком изображении дефекты получаются не очень яркими на фоне света, который испускает из-за ГВГ остальной материал без дефектов. В поисках способа решить проблему ученые изучили под электронным микроскопом атомную структуру однослойного диселенида молибдена, и их расчеты показали, что дефект структуры должен испускать свет под увеличенным углом, по сравнению с однородным материалом. Чтобы проверить это, исследователи адаптировали технологию темнопольной микроскопии. Поместив образец в центр, они заблокировали центральную часть объектива и стали фиксировать только те лучи, которые падают на его края под большим углом.
В результате удалось получить контрастное изображение однослойного материала, на котором дефекты структуры ярко светятся на темном фоне. Поскольку при этом используется оптический, а не электронный микроскоп, этот способ дешев, удобен и быстр. В дальнейшем авторы надеются расширить метод для работы с другим материалом, в том числе графеном, а так же планируют научиться фиксировать отсутствие единичных атомов.
Ранее в Корее смогли упростить изготовление графеновых квантовых точек, а американцы увидели в электронный микроскоп изотопные метки в клетках.
Источник: https://nplus1.ru/

Схема эксперимента: частицу размером около 150 нанометров поместили в резонатор (серые стенки) с помощью оптического пинцета (фиолетовый луч) и затем провели частотный анализ резонатора с использованием гетеродинной схемы (обозначено зеленым) Uroš Delić et al. / Science, 2020
Ученые из Австрии и США смогли поймать частицу, состоящую из 100 миллионов атомов, с помощью лазера и практически заставить ее остановиться при комнатной температуре. Частица находилась в основном квантовом состоянии с эффективной температурой 12 микрокельвинов. Работа опубликована в журнале Science.
Известно, что микроскопические объекты, размером пару атомов, описываются законами квантовой механики. Такие объекты естественным образом могут быть использованы в квантовых технологиях: при проектировании высокочувствительных сенсоров или симуляторов сложных макроскопических систем. Однако, создание больших когерентных объектов, которые состоят из миллионов атомов, — открытая проблема на сегодняшний день.
Физики из Венского университета и MIT создали макроскопическую суперпозицию внутри частицы диоксида кремния, которая содержала в себе 100 миллионов атомов. Ученые поместили частицу в резонатор с помощью оптического пинцета — устройства, в котором используется достаточно мощный лазер для удержания объекта в фиксированном положении в пространстве с точностью в несколько нанометров.
С помощью частотного анализа резонатора физики измерили энергию движения частицы и её температуру, а также время жизни этого состояния. Благодаря точному подбору параметров оптического пинцета исследователи заставили частицу быть в основном квантовом состоянии с наименьшей возможной энергией.
Эффективная температура охлаждаемого объекта составляла всего 12,2 ± 0,5 микрокельвина, а среднее число фононов было 0,43 ± 0,03. Число фононов характеризует энергию механического движения частицы — это первый раз, когда физикам удалось достичь столь малого числа при комнатной температуре. Время жизни созданного состояния составило 7,6 ± 1 микросекунда.
В дальнейших экспериментах исследователи планируют увеличить время когерентности системы, используя более совершенные резонаторы.
Проведенный физиками эксперимент открывает возможности для макроквантовой физики. Это, в свою очередь, поможет в создании высокоточных детекторов, в том числе и детекторов темной материи. Помимо технического применения, такие системы могут помочьфизикам выявить квантовые эффекты в гравитации.
Источник: https://nplus1.ru/

Экраны многих современных смартфонов «страдают» выгоранием пикселей. Из-за наличия органического компонента в матрицах типа OLED (и их производных) при долговременном «подсвечивании» одних и тех же иконок на экране, пиксели начинают деградировать. Пока производители советуют пользователям периодически менять интерфейс экрана, переставлять иконки местами и регулярно обновлять заставку.
На самом деле, проблему можно решить: для этого необходимо минимизировать использование органических компонентов в матрице экранов. Коллектив ученых НИТУ «МИСиС», занимающийся разработкой перовскитных тонкопленочных устройств, предложил новую модификацию светодиода, впервые применив двумерный неорганический материал в качестве электрон-транспортного слоя перовскитного светодиода.
Статья о разработке опубликована в журнале Applied Materials & Interfaces.
Перовскитные материалы – молодой класс полупроводников, открывающий широкие возможности снижения стоимости ярких дисплеев и целого ряда оптоэлектронных элементов, таких как солнечные батареи, лазеры, фотодетекторы и светоизлучающие диоды (светодиоды). Применение перовскитов, в частности, для производства светодиодных экранов для телефонов или телевизоров может позволить значительно снизить стоимость производства и продлить срок их службы.
Научный коллектив лаборатории перспективной солнечной энергетики НИТУ «МИСиС» разработал перовскитный светодиод, в котором был применен двумерный трисульфид циркония. Это первый случай, когда двумерный материал был применен как альтернатива традиционным органическим слоям светодиодного устройства. Слой сформирован промышленным методом слот-матричной печати, что позволит быстро адаптировать технологию для серийного производства.
«На определенном этапе исследования неизбежно возникает вопрос: подходит ли разработка для внедрения в серийное производство? Мировой опыт сборки перовскитных светодиодов сводится к послойной сборке компонентов путем нанесения прекурсоров на вращающуюся стеклянную подложку. Это позволяет добиться однородности слоев, но совершенно не подходит для серийного производства – такой подход не предусматривает одновременной загрузки нескольких образцов, – комментирует один из авторов исследования, научный сотрудник лаборатории перспективной солнечной энергетики НИТУ «МИСиС» Артур Иштеев. – Поэтому мы заинтересованы в поиске таких материалов, которые бы позволяли масштабировать производство перовскитных светодиодов».
Ученые работают над адаптацией технологии нанесения перовскита по аналогии с индустриальными методами полупроводниковой промышленности. Это позволит устранить недостатки выгорающих органических светодиодов в современных дисплеях путем замены на стабильные перовскитные диоды.
За разработку новых тонкопленочных перовскитных оптоэлектронных устройств ученые стали лауреатами ежегодной премии Правительства Москвы молодым ученым в области науки и инноваций за 2019 год.
Источник: http://www.nanonewsnet.ru/

Ученые создали прототип фотодетектора из графена, который способен регистрировать объемное изображение (правда, всего из одного пикселя). Ключевая особенность разработки — прозрачность приемника, которая позволяет объектам на разном расстоянии фокусироваться в разных областях устройства.
Такой прибор может регистрировать полностью все четырехмерное световое поле в рамках одной экспозиции, пишут авторы в журнале Nature Photonics.
В основе любой системы визуализации лежит фотодетектор, то есть собственно чувствительная к свету часть. В большинстве случаев приемник оказывается двумерным, причем это справедливо как для аналоговых и цифровых камер, так и для глаз живых существ. В результате приходящий от трехмерных объектов свет регистрируется в виде проекции на поверхность детектора, из-за чего часть информации теряется. В частности, по отдельному кадру с такого приемника затруднительно узнать относительные расстояния между изображенными предметами.
В то же время полноценная информация о распределении света в пространстве (в случае присутствия лишь выпуклых объектов) может быть выражена в виде четырехмерного светового поля, в котором закодированы как яркость, так и направления лучей. Такую информацию принципиально нельзя в полном объеме зафиксировать плоским приемником, так как падающие под разными углами лучи могут вызывать один и тот же отклик на его поверхности. В результате современные камеры обладают конечной глубиной резкости, то есть на их кадрах предметы лишь в определенном диапазоне расстояний оказывают в фокусе, в то время как более близкие и более далекие объекты будут размыты.
Это ограничение можно преодолеть несколькими способами. В частности, уже был созданы пленоптические камеры, каждый кадр которых состоит из множества копий изображений, снятых под слегка разными углами.
Альтернативным и ранее не осуществленным способом зафиксировать все световое поле является создание объемного детектора, в котором находящиеся на разном расстоянии предметы будут фокусироваться в различных слоях прибора.
В таком случае сравнение получаемых на разных глубинах изображений позволит восстановить траектории лучей.
Американские исследователи из Мичиганского университета под руководством Теодора Норриса (Theodore Norris) создали прототип такого многослойного фотоприемника из графена — плоских структур из расположенных в форме шестиугольников атомов углерода. Разработка стала возможна благодаря свойствам данного вещества: одиночный лист графена поглощает всего около 2,3 процента света видимого диапазона, а всего пары листов достаточно для создания одного слоя детектора. В результате авторам удалось сконструировать полноценную систему, пропускающую достаточно света до находящихся позади слоев.
Ученым пришлось существенно изменить применяемые материалы. В частности, графен выращивался на прозрачном стеклянном субстрате, а не на традиционно используемых кремниевых подложках. Более того, графен использовался не только как приемник, но также как вещество токопроводящих контактов и затвора транзисторов — фактически, все функциональные элементы системы были сделаны из графена.
Созданный авторами прототип формирует изображение всего из одного пикселя, фокусное расстояние при этом составляет сто миллиметров, а два слоя однопиксельных графеновых детекторов разделены на два миллиметра. В качестве тестового изображения были получены кадры отверстия диаметров 30 микрон, находящемся на оси прибора. Исследователям удалось определить расстояние до объекта на основе сравнения интенсивностей на двух приемниках.
Полученные результаты были использованы для проведения численного симулирования работы полноценной многопиксельной камеры на такой технологии. Также были разработаны алгоритмы обработки изображений со множества слоев. Ученые отмечают, что при полноценном воплощении подобная камера может быть востребована в ряде применений. В частности, определение расстояния до объектов пригодится в робототехнике, а трехмерные изображения смогут продвинуть изучение биологических объектов, например, клеток.
Источник: https://nplus1.ru/

Группа специалистов из Германии и Австралии добилась рекордного качества трехмерной печати микроскопических 3D-объектов. Разработанный ими метод позволяет выдавать до десяти миллионов вокселей в секунду.
Если вам нужно напечатать объект длиной всего несколько сантиметров — и с деталями размером в долю миллиметра — то обычный метод 3D-печати с помощью экструзии расплавленного пластика не подойдет. Для этого используют лазер, выборочно воздействующий на фоторезист — светочувствительный жидкий полимер. Луч фокусируется на определенной точке материала и делает его твердым, шаг за шагом выстраивая трехмерную структуру.
Обычно этот процесс позволяет печатать трехмерные объекты со скоростью несколько сотен тысяч вокселей — эквивалентов пикселей в 3D — в секунду. И хотя кажется, что это быстро, даже струйный принтер печатает картинки в сотню раз быстрее.
Вместе с исследователями из Технологического университета Квинсленда ученые из Технологического института Карлсруэ разработали новую систему, в которой один лазерный луч оптически делится на девять отдельных лучей. Все эти «суб-лучи» движутся независимо, но одновременно, и каждый наводится на отдельную область фоторезиста, сообщает New Atlas. В результате скорость 3D-печати достигает приблизительно 10 млн вокселей в секунду.
Для демонстрации возможностей системы исследователи напечатали прямоугольный параллелепипед размером 60 кубических миллиметров, но с решетчатой внутренней структурой, состоящей из элементов микрометрового масштаба. Всего в кубике 300 млрд вокселей — это новый мировой рекорд.
Разработчики надеются, что их технология найдет применение в оптике, фотонике, материаловедении, биоинженерии и проектировании средств обеспечения безопасности.
Источник: https://hightech.plus/

Tout sur Kamagra ici https://www.kamelef.com/kamagra-ou-viagra.html.

Поиск