Экспериментально испытан новый метод зажигания в лазерном термоядерном синтезе

В новом эксперименте, описанном в журнале Physical Review Letters, физики предлагают преодолеть эти трудности с помощью инновационного подхода. Методика предполагает интеграцию динамической оболочки вместо традиционных мишеней для лазерной бомбардировки, используемых для ИЯС.
В традиционном подходе ИЯС мишень для высокоэнергетической лазерной бомбардировки состоит из небольшого количества криогенно замороженного ДТ внутри сферической оболочки. При этом термоядерное топливо удерживается инерционными силами. При контакте с лазерным лучом нагретая оболочка доводит топливо (ДТ) до экстремально высоких температур и давлений. При благоприятных условиях оболочка разрушается и воспламеняется, что приводит к слиянию изотопов.
Однако этот метод имеет ряд недостатков. Если применить его на энергопроизводящей установке, то потребуется использовать около миллиона мишеней в день. Мало того, что их производство займет много времени, так еще и криогенные процессы, обеспечивающие их изготовление, являются дорогостоящими.
Динамические оболочки производить проще и дешевле. Реакции, в которых они используются, предполагают установку жидких мишеней ДТ внутри капсул из пропитанного пенопласта. При облучении высокоэнергетическими лазерными лучами капсула расширяется, образуя тонкую оболочку, затем имплантируется и разрушается при воспламенении. Поскольку мишень жидкая, оболочка не требует криогенного процесса. Пластиковая оболочка формируется с помощью одного из самых мощных в мире лазеров OMEGA. В результате образуется оболочка с плотностью, равной плотности жидкого топлива ДТ.
Достигнув капсулы, лазер проникает в ее центр и отражается от ее внешней поверхности. Затем материал, подвергшийся удару, расширяется наружу, и давление падает под действием давления абляции лазера. В этот момент включается регулировочный удар, направленный внутрь сферы, при сохранении давления абляции. В результате этого удара аблятор и топливо сжимаются, и капсула превращается в тонкую оболочку. Затем образовавшаяся оболочка ускоряется и сжимается высокоэнергетическим формирующим лазером (OMEGA), что приводит к запуску термоядерной реакции.
Помимо простоты изготовления, динамическая оболочка не требует трубки-заполнителя и более симметрична при имплозии. Кроме того, она менее чувствительна к лазерному отпечатку и неопределенности, связанной с взаимодействием со льдом (из-за отсутствия криогенной обработки).
«Сочетание этой концепции мишени с высокоэффективной лазерной системой, разрабатываемой в настоящее время в Лаборатории лазерной энергетики, откроет очень привлекательный путь к термоядерной энергии», — полагает Игуменщев.
Однако для получения термоядерных реакций, которые могут быть применены в энергетических установках, лазерные импульсы должны быть более энергичными и длинными. Тем не менее, проведенное исследование демонстрирует возможность реализации этой новой концепции.
Источник: https://www.atomic-energy.ru/

© 2024 Лазерная ассоциация

Поиск