Ученые Томского политехнического университета синтезируют наночастицы золота особой, звездчатой формы, и покрывают их органическими соединениями. Проведенные эксперименты доказали, что эти наночастицы обладают интересным свойством — под действием лазерного излучения они проявляют антибактериальную активность. Даже теоретически бактерии не смогут выработать устойчивость к таким частицам, поэтому их можно будет использовать для создания новых материалов для больниц и, в частности, операционных, где обнаруживают все новые виды устойчивых к антибиотикам бактерий. Данные по этому исследованию недавно были опубликованы в журнале «Chemistry Open», сообщает пресс-служба ТПУ. 
Исследование ведется коллективом ученых на кафедре технологии органических веществ и полимерных материалов Томского политеха совместно с коллегами из Химико-технологического университета Праги. Наночастицы золота, синтезируемые политехниками, получили название «звездчатые» благодаря своей форме. С помощью специально созданных реагентов ученым ТПУ удалось нанести на их поверхность органические соединения методом ковалентной модификации поверхности с использованием ароматических солей диазония. 
«Звездчатые наночастицы и методы их синтеза ранее уже были описаны. Нам же удалось модифицировать их поверхность так, чтобы они лучше взаимодействовали с клеточными мембранами, и продемонстрировать их антибактериальные свойства. Органические соединения на поверхности частиц позволяют им лучше прикрепляться к мембране. Дальше в игру вступает физика процесса: лазер возбуждает плазмонный резонанс, и наночастицы начинают фактически прожигать клеточную мембрану, уничтожая бактерию», – говорит доцент кафедры технологии органических веществ и полимерных материалов Павел Постников. 
По словам ученого, перспективное направление использования звездчатых наночастиц — это новые медицинские материалы. Например, частицы могут входить в состав полимерных материалов, из которых делают операционные столы, мебель и другие предметы для операционных и больниц. Без светового воздействия материал будет инертным или слабо проявлять антибактериальную активность. 
«Антибиотики — это продукты тех же самых бактерий. Поэтому бактерии могут вырабатывать ферменты, разрушающие антибиотик. Устойчивые к антибиотикам бактерии в основном появляются в больничных условиях, здесь идеальное место для их размножения и естественного отбора. А наночастицы золота или другого благородного металла — это абсолютно чужеродный для бактерии материал. У бактерий нет никаких механизмов защиты от наночастиц, и даже в теории они не могут выработать устойчивость. Наночастицы можно сравнить с кувалдой для бактерии, от нее просто нет защиты», – поясняет ученый. 
Сейчас в больницах для борьбы с болезнетворными микроорганизмами используют ультрафиолетовое излучение кварцевой лампы. Но во время кварцевания люди не должны находиться в помещении. В свою очередь, длина волны светового излучения, активирующая антибактериальную активность наночастиц золота, безопасна для человека. 
«Технология с использованием звездчатых наночастиц и лазера не подходит для борьбы с бактериями внутри организма на данном этапе. Однако в перспективе может использоваться для лечения кожных заболеваний. В области же новых материалов — это очень интересное направление. Подбирая форму, размеры наночастиц, сами металлы, варьируя длину волны лазера, можно получать различные материалы с различной функциональной активностью», — добавляет Павел Постников. 

https://scientificrussia.ru/

Физики из Университета Бригама Янга (США) разработали устройство на основе лазера, с помощью которого можно быстро обнаруживать повреждения в металлах. Об этом ученые рассказали на Национальном съезде и выставке Американского химического общества.
Созданная технология позволяет находить повреждения, незаметные и недоступные сейчас для изучения без специального обследования в лаборатории. Уже существует несколько технологий, которые выявляют микротрещины в металлах, не повреждая их. Однако они дороги и имеют целый ряд недостатков. Например, методы, основанные на использовании рентгеновского излучения, требуют защиты работающих с ними людей, то есть плохо применимы «в полевых условиях». Другие технологии дают слишком нечеткие результаты, а использование приборов требует высокой квалификации.
В данном исследовании для нахождения микроповреждений в металлах физики решили использовать спектроскопический метод генерации второй оптической гармоники, изменяющий длину волны света. Падая на поверхность материала, часть зеленого света лазера меняет диапазон на ультрафиолетовый, отражаясь от поверхности вместе с остальным зеленым светом. «Доля света, длина волны которого изменилась, зависит от состояния металла, и, если его свойства изменились под воздействием нагрузки, мы можем проследить это по изменению света», — рассказал один из авторов работы, специалист из Университета Бригама Янга, Джеймс Петерсон. 
По мнению исследователей, технология поможет отказаться от практики, когда детали заменяют, исходя из среднего срока службы. Усовершенствовав метод, инженеры смогут решать, стоит ли заменять часть механизма, опираясь на знание ее фактического состояния.

https://indicator.ru/

Ученые Томского политехнического университета вместе с коллегами из Института оптики атмосферы СО РАН (ИОА СО РАН) создают усовершенствованный лазерный монитор, позволяющий наблюдать за быстропротекающими процессами, которые скрыты от глаз мощной засветкой. Простой пример таких процессов — сварка. Ранее коллектив уже разработал прототип такого монитора на основе одного лазера, сейчас команда проекта создает монитор на основе двух лазеров. Это позволит получать более качественные изображения объектов и даже наблюдать за процессами, сопровождающимися рентгеновским излучением.
Фото предоставлено участниками проекта. 
По словам разработчиков, при создании новых материалов с помощью современных технологий часто возникает мощная засветка. Именно она не позволяет увидеть, как в реальности протекает процесс.
В разрабатываемом мониторе используются два активных элемента — два лазера. Один подсвечивает исследуемый объект или процесс, а второй — фильтрует засветку и усиливает полученное изображение.
«Два лазера помогают нам преодолеть некоторые ограничения моностатического лазерного монитора, где использован один лазер. Например, они увеличивают предельную дистанцию. У монитора с одним лазером эта дистанция равна 3 метрам, то есть это максимальное расстояние, с которого можно наблюдать за процессом. Но есть процессы не только с фоновой засветкой, но и, например, сопровождающиеся рентгеновским излучением, которое может вывести из строя электронику. Бистатическая схема — с двумя лазерами — позволит нам отодвигаться от объекта на десятки метров и визуализировать сложные процессы», — говорит доцент кафедры высоковольтной электрофизики и сильноточной электроники ТПУ, научный сотрудник ИОА СО РАН Максим Тригуб. Научным руководителем проекта является профессор кафедры промышленной и медицинской электроники ТПУ Геннадий Евтушенко.
Кроме того, новая модификация монитора позволяет получать более контрастные изображения объектов и увеличивает область зрения системы.
«Увеличение области зрения означает, что теперь на определенной дистанции мы видим большую площадь объекта, нежели раньше», — поясняет исследователь.
Отметим, недавно этот проект получил поддержку в рамках программы «УМНИК» Фонда содействия развитию малых форм предприятий в научно-технической сфере. Проект на конкурсе представил молодой ученый, магистрант Института физики высоких технологий Томского политеха Николай Васнев. Грант по этой программе рассчитан на два года.
«Грант будет направлен на разработку аппаратно-программного комплекса, который позволит синхронизировать работу лазеров.
Разработка может найти применение, прежде всего, в сварочной отрасли и литейной промышленности. Кроме того, она представляет интерес для ряда научных институтов.
Так, работающий прототип устройства на одном лазере уже был использован для совместных научных исследований с Институтом физики прочности и материаловедения СО РАН и Институтом электрофизики Уральского отделения РАН», — говорит участник проекта Николай Васнев.
Добавим, этот проект также поддерджан грантом Российского научного фонда. 

http://news.tpu.ru/

Исследователи из университета Уцуномии (Utsunomiya University), Япония, разработали технологию формирования при помощи лазера крошечных пузырьков в объеме жидкости. Эти пузырьки, местоположение которых выдерживается с высокой точностью, рассеивают свет от внешнего источника, превращая, тем самым сосуд с жидкостью в своего рода трехмерный дисплей, изображение которого видимо безо всяких очков и с любой точки зрения. Нынешняя технология является лишь доказательством работоспособности заложенных в нее идей, но в будущем на ее основе могут быть созданы полноцветные динамические объемные дисплеи, предназначенные для художественных выставок и музеев, к примеру, и позволяющие зрителям рассмотреть изображение объекта со всех его сторон.
Пузырьки в объеме жидкости формируются за счет эффекта многофотонного поглощения, который возникает при фокусировке света двух фемтосекундных лазеров в одной точке пространства. Такой подход позволяет формировать пузырьки в заданной точке объема с высокой точностью. Используемая для заполнения сосуда жидкость имеет большую вязкость и это не позволяет сформированным пузырькам быстро подниматься вверх. Через непродолжительное время пузырьки исчезают и "пузырьковое" изображение требует повторной регенерации.
"Пузырьковое" изображение становится видимым при его освещении светом от внешнего источника, мощного светодиода в данном случае. Японские исследователи использовали многоспектральный светодиод, что позволяет окрашивать "пузырьковое" изображение в синий, зеленый, красный, белый, желтый и другие цвета. Более того, освещение пузырьков светом от цифрового проектора позволит в будущем окрашивать отдельные участки формируемого изображения в разные цвета.
Вместо того, чтобы формировать один пузырек за другим, последовательно "сканируя" лучами лазеров весь объем жидкости, исследователи использовали своего рода голограмму, генерируемую компьютером. Эта голограмма представляет собой трехмерный образ, позволяющий управлять с достаточно высокой точностью количеством и размерами формируемых микропузырьковых пикселей. Такой подход позволяет увеличить количество рассеиваемого пузырьками света, что, в свою очередь, делает изображения более четкими и контрастными.
А сейчас исследователи разрабатывают технологию, позволяющую создавать и управлять движением потоков жидкости в объеме сосуда. Эта технологий позволит быстро "стереть" сформированное ранее изображение или заставит его двигаться. Кроме этого, исследователями ведется адаптация микропузырьковой технологии для возможности создания при ее помощи изображений больших размеров внутри сферических сосудов. И для этого исследователям потребуется создать достаточно сложный алгоритм компенсации сферических искажений, которые обусловлены разницей в коэффициентах преломления света воздуха, стекла сосуда и заключенной в нем жидкости.

http://www.dailytechinfo.org/

Нанофотонные схемы, крошечные чипы, которые фильтруют и управляют распространением света, страдают от незначительных изменений, вызванных влиянием внешних факторов, которые оказывают отрицательное влияние на оптические характеристики этих схем. Группа исследователей из Утрехтского университета (Utrecht University), университета Твенте (University of Twente) и исследовательского центра Thales Research & Technology France нашли способ, позволяющий компенсировать вышеупомянутые изменения, что, в свою очередь, позволит в скором будущем изготавливать надежные компоненты коммуникационного оборудования для датацентров и высокопроизводительных компьютерных систем.
Оптические коммуникации являются самой распространенной в мире технологией, обеспечивающей высокоскоростную передачу информации по оптоволоконным линиям. Но в нынешнее время развивается новое направление оптических коммуникаций, при помощи которых будет осуществляться передача информации в пределах кристалла одного чипа, что позволит уменьшить количество потребляемой чипом энергии.
Одним из самых многообещающих способов сделать это является использование кристаллических фотонных нанорезонаторов, где свет пропускается через промежуток между двумя резонаторами, настроенными на одну и туже частоту. Резонансная частота определяется формой и структурой резонатора, однако, самые лучшие из имеющихся на сегодняшний день технологий нанопроизводства не могут обеспечить необходимую точность изготовление отверстий, в десять раз превышающих диаметр атома. При производстве резонаторов всегда возникает небольшая погрешность, определяющее отклонение резонансной частоты устройства от номинала.
Упомянутая выше группа ученых разработала и провела экспериментальную демонстрацию нового оптического метода управления кристаллическим фотонным нанорезонатором. Эти ученые использовали метод цифровой голографии для того, чтобы сфокусировать свет в определенных точках нанорезонатора. Этот свет локально нагревает элементы нанофотонного чипа, что компенсирует отклонения, возникшие в результате погрешности производства или возникшие в результате воздействия разных факторов окружающей среды.
Помимо компенсации неточностей, новый метод голографической коррекции стал еще одним методом управления распространением света. Ученые смогли переводить резонатор в состояние резонанса и выводить его из него. Это избавляет разработчиков нанофотонных схем от необходимости использования более сложных методов оптического и электрического управления, а это, в свою очередь, сделает новые нанофотонные устройства и компьютеры, использующие их, более простыми, более эффективными и более дешевыми в производстве.

http://www.dailytechinfo.org/

Существующие сейчас технологии построения атомных часов на основе оптической решетки из атомов стронция позволяют производит одновременный "опрос" миллионов атомов, что обеспечивает им спектроскопическую добротность (показатель качества работы) на уровне 1*104. Взаимодействия между отдельными атомами оптической решетки вынуждают разработчиков атомных часов идти на компромисс между стабильностью, которая является следствием использования большого количества атомов, и точностью, которая зависит от неравномерности плотности распределения атомов решетки. А недавно группа исследователей нашла возможность решения проблемы повышения качества работы оптических атомных часов. Использование так называемого газа Ферми, находящегося в вырожденном квантовом состоянии, и света сверхстабильного лазера позволит поднять показатель добротности до фантастически высокого уровня в 5.2*1015.
Работа, проведенная исследованиями, является одним из предпоследних шагов, который приблизит оптические атомные стронциевые часы к максимально возможному теоретическому пределу их точности и стабильности. При этом, уникальная методика "чтения" состояния всех атомов в оптической решетке позволит "опрашивать" всю оптическую решетку за время, не превышающее 100 секунд.
Газ Ферми представляет собой набор атомов стронция, охлажденных до сверхнизкой температуру и "вмороженных" в узлы трехмерной кубической решетки. При этом, в качестве основы решетки может выступать оптическая ловушка, электромагнитная ловушка или объем специального прозрачного материала. В вырожденное квантовое состояние такой газ переводится при помощи лазерного света и пребывание атомов в таком состоянии позволяет уменьшить величину их нежелательных взаимодействий.
Оптические атомные часы на основе вырожденного квантового состояния представляют собой многообещающий инструмент для изучения физики взаимодействий, в которых принимает участие несколько тел различного масштабного уровня. К сожалению, данные исследования являются теоретическими в большей своей части, практическая же реализация оптических атомных часов на базе газа Ферми еще невозможна в силу нескольких неразрешенных на сегодняшний день проблем технического и технологического плана.

http://www.dailytechinfo.org/

Голографические технологии являются одним из самых перспективных методов увеличения плотности оптических устройств хранения информации, следующих за постоянной тенденцией увеличения емкости с одновременным уменьшением габаритных размеров. И группе исследователей из японского университета Электрических Коммуникаций (University of Electro-Communications, UEC) удалось создать новый полимерный композитный материал, в объеме которого находятся наночастицы определенного типа. Оптическая система на базе такого материала обеспечивает самый высокий на сегодняшний день уровень оптического сигнала и самое высокое значение соотношения сигнала к шуму. А использование нового наноматериала в голографических устройствах хранения информации позволит сократить в несколько раз уровень ошибок записи-чтения и это, в свою очередь, позволит начать практическое использование голографических накопителей для хранения больших объемов информации.
Практически все оптические технологии записи и хранения информации используют разницу коэффициента преломления света участками материала-носителя, прошедшими через процесс определенной обработки. В отличие от обычных технологий, использующих хранение информации на плоскости информационного слоя компакт-диска, к примеру, голографические технологии позволяют записывать информацию в объеме трехмерного пространства, во много раз увеличивая информационную емкость носителя. Но для качественной работы голографических технологий требуется большая разница в коэффициенте преломления материала-носителя, чем это необходимо для записи информации в одной плоскости.
Превосходными параметрами, соответствующими высоким критериям технологий голографической записи информации, обладают композитные соединения полимерных материалов с неорганическими наночастицами. В свое время исследователи из университета UEC уже разработали ряд таких композитных материалов на основе тиоленовых мономеров. Запись и считывание информации из такого материала производилось при помощи луча лазера, фокусируемого в точке пространства, размером в один микрон, при этом было получено весьма неплохое значения соотношения сигнал/шум.
Позже японские исследователи пошли чуть дальше, добавив в объем полимерного материала наночастицы определенной формы и размеров. Для записи и считывания информации из такого материала требуется уже два луча лазерного света, один - опорный, а второй - рабочий. При таком подходе ученым удалось добиться достаточно высокой плотности хранения данных и обеспечить высокую скорость записи-считывания информации.
И завершающим "аккордом" разработки данной технологии стало использование прозрачных кварцевых наночастиц в количестве 25 процентов от общего объема, равномерно рассеянных по полимерному материалу, имеющему достаточно сложный состав, состоящий из смеси мономеров нескольких типов. В результате таких усилий уровень ошибок при записи и считывании информации снизился до значения 10-4, а значение соотношения сигнал/шум превысило 10 единиц.

http://www.dailytechinfo.org/

Группа исследователей из университета Миннесоты разработала структуру и создала опытные образцы магнитного туннельного перехода, состояние которого может быть переключено при помощи импульсов света, длительностью в одну триллионную долю секунды, что является абсолютным рекордом этого типа. Такие переходы могут стать основой ячеек сверхскоростной магнитной памяти с оптическим управлением и спинтронных устройств, устройств, использующих для передачи и обработки информации волнообразное движение спинов электронов.
Традиционная структура магнитного туннельного перехода состоит из двух слоев различных магнитных материалов, разделенных изолирующим слоем, называемым барьером. Информация записывается в такую ячейку памяти путем изменений намагниченности одного из слоев. Для этого, в большинстве случаев, используется движение вращающихся по спирали электронов, а процесс носит название спин-обработки. Однако, спин-обработка имеет верхний предел по быстродействию, который находится на частоте 1.66 ГГц, что значительно ниже быстродействия даже обычных кремниевых транзисторов.
Базой для создания магнитного перехода нового типа стали исследования, проведенные в 2007 году голландскими и японскими учеными. Они продемонстрировали, что сплав, состоящий из гадолиния (Gd), железа (Fe) и кобальта (Co) в определенных пропорциях может изменять свою намагниченность и другие параметры, имеющие отношение к магнетизму, под воздействием импульсов света. Этим сплавом исследователи из Миннесоты заменили верхний слой магнитного туннельного перехода. Еще одной модификацией исходной структуры перехода стало добавление к нему электрода из прозрачного токопроводящего материала - оксида олова-индия. Вся структура магнитного туннельного перехода представляет собой круглый столбик, диаметром в 10 микрометров, что более чем в десять раз меньше толщины человеческого волоса.
Для проверки работоспособности перехода исследователи освещали его последовательностью импульсов инфракрасного света, генерируемых недорогим оптоволоконным лазером. Период следования импульсов равнялся одной микросекунде (миллионная доля секунды), хотя длительность каждого импульса не превышала одно триллионной доли секунды. Каждый раз, когда импульс света попадал на поверхность перехода, ученые наблюдали скачкообразное изменение напряжения на устройстве. А это изменение говорило о соответствующем изменении электрического сопротивления магнитного туннельного перехода. Поскольку длительность импульса света равнялась одной пикосекунде, то при помощи такой технологии, в теории, можно получить скорость записи информации в магнито-оптичекую память на уровне 1 терабита в секунду.
"Наше достижение может стать в будущем быстродействующим буфером между оптоволоконной оптикой, которая обеспечивает сверхвысокие скорости передачи данных, и энергонезависимыми магнитными устройствами хранения информации" пишут исследователи. А в своих дальнейших исследованиях ученые будут работать над уменьшением размеров структуры магнитного туннельного перехода до 100 нанометров и меньше. Помимо этого, будут произведены попытки уменьшить количество энергии, несомой импульсами света, которая требуется для изменения состояния магнитного перехода. И все эти усилия, по мнению ученых, должны привести к созданию технологии энергонезависимой магнитной памяти на туннельных переходах, чипы которой можно производить при помощи стандартного технологического оборудования.

http://www.dailytechinfo.org/

Группа исследователей из университета Райс (Rice University), возглавляемая материаловедом Роуцбе Сасавари (Rouzbeh Shahsavari), придумала новый рецепт приготовления "наносэндвича", наноразмерного многослойного материала, обладающего суперпрочностью и рядом превосходных оптоэлектронных свойств. Проделанная учеными работа является результатом проведенного ими же сложнейшего компьютерного моделирования, целью которого являлся поиск новых материалов для технологий химического анализа, катализа и оптической электроники.
Толчком к данным исследованиям стал успех других ученых, которым удалось, используя силы Ван-Дер-Ваальса, соединить различные молекулярные компоненты, заключенные в общую оболочку. Работа ученых из университета Райс выступала в качестве еще одной проверки теории, позволяющей определить заранее электронные, оптические, химические и физические свойства сложных композитных материалов. А в данном случае таким материалом стал слой оксида магнитя, заключенный между двумя слоями графена.
Напомним нашим читателям, что у графена отсутствует понятие электронной запрещенной зоны, что делает некоторые другие материала полупроводниками. Однако, у нового гибридного материала запрещенная зона имеется, и ее ширина может быть подстроена в зависимости от параметров составных частей материала. Кроме этого, такой же гибкой настройке подвержены и оптические свойства материала, что делает его необычайно полезным для применения в оптической электронике.
"Единственный слой оксида магния способен поглощать свет только в узком диапазоне длин волн. Но когда такой материал пойман в ловушку между двумя слоями графена, он становится способным к поглощению света в более широком спектре" - рассказывает Роуцбе Сасавари, - "И это делает его идеальным вариантом для изготовления светочувствительного элемента различных фотодетекторов".
"Сейчас на свете не существует одного единственного чудо-материала, при помощи которого можно закрыть все технические проблемы в мире" - рассказывает Сасавари, - "И, как показывает практика, лучшие результаты в каждой области дают гибридные материалы, состоящие из компонентов разной природы".
Теоретические математические модели, разработанные группой Сасавари, могут одинаково хорошо работать и по отношению к другим двухмерным материалам, к примеру, с нитридом бора с шестиугольной кристаллической решеткой, силицену и т.п. Помимо этого, можно использовать молекулярное наполнение этих наносэндвичей любого типа. "Моя группа сейчас работает над целым рядом гибридных материалов, меняя используемые в них компоненты и их структуру" - рассказывает Сасавари, - "И мы надеемся, что при помощи этих материалов будут решены некоторые из сложных проблем, с которыми невозможно справиться, используя более традиционные методы и подходы".

http://www.dailytechinfo.org/

Известно, что на самом маленьком уровне, на уровне субатомных частиц, законы классической физики перестают работать и все происходящее начинает подчиняться законам загадочной квантовой механики. Некоторые из этих законов уже изучены в достаточной степени, и это позволяет ученым с достаточно большой вероятностью прогнозировать поведение квантовых частиц, таких, как запутанные фотоны света. Однако, результаты исследований, проведенных учеными из университета Восточной Англии (University of East Anglia, UEA), Великобритания, указали на то, что крошечные частицы света в некоторых случаях могут вести себя таким образом, что это не вписывается в рамки существующей квантовой теории.
Ученые занимались исследованиями квантового процесса непосредственного параметрического преобразования (spontaneous parametric down-conversion, SPDC). В этом процессе луч света проходит сквозь специальный кристалл, в результате чего получаются пары запутанных на квантовом уровне фотонов. Напомним нашим читателям, что запутанные квантовые частицы являются связанными, принудительное изменение квантового состояния одной из частиц вызывает изменение состояния второй частицы, несмотря на то, что их может разделять сколь угодно большое расстояние.
Согласно имеющейся квантовой теории запутанными становятся только те фотоны, которые прошли через одну и туже область (точку) кристалла. Однако, ученые обнаружили, что запутанными могут стать и фотоны, прошедшие через области кристалла, разделенные достаточно большим расстоянием. "Запутанные фотоны могут появиться из областей кристалла, которые отдалены друг от друга на сотые части микрометра" - рассказывает профессор Дэвид Эндрюс (David Andrews), - "С точки зрения существующей квантовой теории такие фотоны не могут стать запутанными, ведь они "родились" очень далеко друг от друга на атомарном уровне".
Запутанные фотоны, пойманные в специальных ловушках, являются одними из основных элементов будущих квантовых компьютеров, компьютеров, обладающих гораздо большей вычислительной мощность, нежели даже самые мощные современные суперкомпьютеры. Однако нестыковка в квантовой теории, связанная с возникновением пар запутанных фотонов, может оказать не очень хорошее влияние на дизайн будущих квантовых вычислительных систем, ведь она вносит дополнительную погрешность в работу отдельных квантовых компонентов.
"Мы показали, что фотоны света не являются "твердыми пулями", поведение которых можно определить с достаточной точностью" - рассказывает Дэвид Эндрюс, - "И разработчики будущих квантовых фотонных вычислительных систем должны учитывать неопределенности, которые могут возникнуть в результате непредсказуемого поведения фотонов".

http://www.dailytechinfo.org/

Группа ученых из университета Маккуори (Macquarie University), Австралия, продемонстрировала способ умножения мощности луча лазерного света при помощи сверхчистого кристалла алмаза. Этот кристалл позволяет сложить в один интенсивный луч лучи нескольких менее мощных лазеров, и все это сильно напоминает технологию, использованную в космической боевой станции "Звезда Смерти" из серии фильмов "Звездные Войны", которая уже больше не является исключительно предметом научной фантастики. У данного достижения уже прямо сейчас имеется несколько областей практического применения, начиная от военных технологий, экспериментальной физики, термоядерной энергетики и заканчивая областью космических лазерных коммуникаций.
Как уже упоминалось немного выше, ключевым моментом новой технологии является сверхчистый кристалл алмаза, обладающий так называемой осью конвергенции. Оптические свойства такого кристалла заставляют несколько интенсивных лучей лазерного света изменить траекторию и передать энергию в заданном направлении, не подвергаясь, при этом, существенным искажениям, приводящим к рассеиванию мощности.
"Наше открытие имеет очень важное значение для бурно развивающейся области лазерных технологий" - рассказывает доктор Аарон Маккей (Dr Aaron McKay), - "Дальнейшее увеличение мощности лазерных систем традиционной конструкции наталкивается на ряд труднорешаемых технологических проблем, таких, как необходимость отвода и рассеивания большого количества паразитного тепла. И объединение в один мощный луч нескольких лучей лазерного света является достаточно многообещающим способом кардинального поднятия мощности лазерных систем".
У технологии объединения лазерных лучей при помощи кристалла алмаза имеется одна особенность. Эту особенность, которая заключается в изменении длины волны света, можно считать одновременно недостатком и одновременно - преимуществом. "Особая длина волны света направленного высокоэнергетического луча очень важна для реализации эффективной передачи энергии сквозь атмосферу. Кроме этого, все это позволит уменьшить опасность для глаз людей или животных, которые по случайности могут попасть в зону действия луча лазерного света" - рассказывает профессор Милдрен (Professor Mildren).
И в заключении следует отметить, что алмаз является не единственным материалом, оптические свойства которого позволяют производить объединение лучей лазерного света на основе эффекта, называемого рассеиванием Рамана. Однако, сверхчистый алмаз является единственным из таких материалов, позволяющим оперировать лучами света большой мощности и интенсивности. Помимо этого, алмаз является превосходным проводником тепла, что позволяет без особых проблем отвести от кристалла любое количество выделившегося в нем паразитного тепла.

http://www.dailytechinfo.org/

Поиск